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ABSTRACT: 

The problem of preconditioning the matrices arising from pseudo-spectral Chebyshev 

approximations of first order operators is considered in both one and two dimensions. In 

one dimension a preconditioner represented by a full matirx which leads to preconditioned 

eigenvalues that are real, positive and lie between 1 and n/2, is already available. Since 

there are cases in which it is not computationally convenient to work with such a 

preconditioner, we study a large number of preconditioners which are "more sparse" (in 

particular three and four diagonal matrices). The eigenvalues of such preconditioned 

matrices are compared. In particular, the analysis is carried out for the quantity 

m a  1 Xi I /min I Xi I ,  where X i  are the preconditioned eigenvalues. 

We apply the results to the problem of finding the steady state solution to an 

equation of the type ut = 3 + f, where Chebyshev collocation is used for the spatial 

variable and time discretization is performed by the Richardson method. 

In two dimensions different preconditioners are proposed for the matrix which arises 

from the pseudo-spectral discretization of the steady state problem in the square 

A = {(x,Y,): - lsxbl ,  -1gy61) 

u, + uy = f 

U(X, Y, 0) = u, 
with boundary conditions at x = 1 and y = 1. Results are given for the CPU time and 

the number of iterations using a Richardson iteration method for the unpreconditioned 

and preconditioned cases. 
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1. INTRODUCTION 

To obtain the pseudo-spectral or collocation approximation let P, be an interpolation 

operator. Let f(x) be a sufficiently smooth function defined in [-1,1] where f(x)=O at the 

appropriate boundaries which yields a well-posed problem for (1.1). Then P,f is the 

interpolation of f at the collocation points xi' i.e. 

PNf(T) = f(x$ and PNfcB,. j = 0, ..., N 

To obtain a Chebyshev Gauss-Lobatto pseudo-spectal approximation in the interval 

[-1,1] we choose 5 = cos jn/N (i = 0, ..., N), which when j # O,N are the extrema of the 

N f h  order Chebyshev polynomials TN(x) = cos(N~os-~x). In order to construct the 

interpolant of f(x) at x, we define the polynomials 

(1- X2)TA(X)(-lj + 
1. 

(j = 0, ..., N) gj(X) = - 
cjN2(x - x] 

- -  - 
co = cN = 2, cj = 1 (1SjSN-1). 

One can easily see that gj@) = 6jk. 

The Nfh degree interpolation polynomial PNf to f is given by 

N 

We must now be able to express derivatives of PNf in terms of f at the collocation 

points x . . Differentiating (1.8) we obtain J 

so that 

d"P,f(x,) N 
(1.10) 
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where 

The pseudo-spectral Chebyshev derivative operator can be represented by the N x N 

matrix S, = [s$ 

where 

In particular the Chebyshev pseudo-spectral approximation for ut = ux , u(x,O) = uo( x) 
N 

k=O 
is given by uN = 1 u(T,t)g,.(x) and 

auN N 

at (Xj .t) = 1 u(x j,t)skj . 
k= 0 
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SN = ' 

2. OUTLINE OF THE PROBLEM 

In the interval [-l,l] let 

2 j -  1 
{. = cos - TI 6 = 42, ..., N) 

J 2N 

if i = j = N -2N2 + 1 
6 

- 
ci(-l)j + i  

c. (Xi' xo) 
i f i # j  - 

J 

if i = j = 1, ..., N-1 j 
- x  

t. lies between x j  and xj-l J 

{ 1  
0 0 0 0 1  01 -1 0 I I 

tN tj 

xN 'N- 1 X. 1 X. J-1 X1 xo 

The modes 5 and tj  have the following properties: 

TN(t,) = 0 j = 1 ,..., N, and TN(xi) = (-l)i i = 0 ,..., N 

Then consider the pseudo-spectral Chebyshev derivative operator with homogeneous 

boundary conditions at x = 1. This operator can be represented by the N x N matrix 

S, = {s..), where 'J 
r 

The matrix SN is full. The condition number C(SN) of S, is large. We have the 

following result which was obtained by Daniele Funaro. 

Lemma 1-1: 

Proof: 

The condition number of S, increases at least like NZ. 

Let U-li denote the norm in E(@,RN). 
of SN is given by 

Then the condition number 

(2.1) c(sN) = ISNU Isk'n - 
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It is known that ISN13p(SN)3ClN2, where p(SN) is the spectral radius of S, and 

c1 is a constant independent of N. On the other hand, we have 

1 Choose qo = [$, ..., 2 I. Then Ilqoll E =  1 and (SN 1+ 'po)j = - (7 - l),  for 

5 4  

j = 1 ,..., N. Furthermore, 

where c2 does not depend on N. 

This implies llS&'U21!S~1~o~N 2c2 Finally, using (2.1), we get C(S,)>C,N2. lh i s  

proves the claim. 

Although the condition number is particularly meaningful for numerical applications, 

its determination is generally very difficult. Another quantity which is meaningful for 

practical application is u(M) = maxl +l/minl A i l  where M is an N x N matrix and X i  

i = 1, ..., N are its eigenvalues. It can be shown empirically that a(SN) behaves like N. 
i 1 

We are interested in finding a "preconditioner" for S,. In particular we are 

In concerned with finding a matrix R, such that the quantitity a(RNISN) is small. 

general this does not imply that the corresponding condition number will be small (so the 

word "preconditioner" is not correct). 

In [DF ] S, is preconditioned by R, = G D N  where the N x N matrix D, = {dij} 

is defined by 

dii = -U(X~-~- xi) i = 1, ..., N 

dii-i = V(X~-~- xi) i = 2, ... N 
d.. = 0 otherwise 

'I 
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Hence D is the upwind finite differences matrix relative to the grid xi' ZN:PN-l+PN-l is 

the operator which maps the values of a polynomial in PN-l at the staggered grid points 

{ F,l,...,F,N} into the values at the mesh points { x ~ ,  ...,x,). 

Preconditioning by ZND, results in preconditioned eigenvalues that are real, positive 

The ratio U(D~~Z&~S, )  is bounded by n/2 (see [DF]). and lie between 1 and n/2. 

This is particularly interesting when the solution of the system 

(2.4) s,u + f = 0 

has to be found. If an iterative method is used, iterating M, = (Z,D,)-'S, instead of 

S, results in convergence in a few iterations In the end of the computation the system 

(ZNDN)U + f = 0 has to be solved. So we require that the matrix R, = ZNDN can be 

inverted easily. Although 2 is a full matrix, it can be inverted very inexpensively in N 

log N operations. Thus the matrix R, = G D N  can be inverted very inexpensively. 

Nevertheless there are cases in which it is not computationally convenient to work with a 

full preconditioner. 

In particular when using an implicit method to find the solution at time T > 0 of 

the equation 

If the implicit Euler method is used, iterates of the matrix (I + AtS,) are considered. A 

good preconditioner for this matrix turns out to be the matrix (I + AtZ,D,). 

Unfortunately, due to the fact that is a full matrix, (I + AtZ,D,) cannot be inverted 

inexpensively. In this work we shall present a large number of preconditioners which can 

be applied to the situations illustrated above. 
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3. ANALYSIS IN ONE DIMENSION 

In order to have the matrix I +At %DN which can be easily inverted we substitute 

2, by some suitable matrix which has a simpler form and which has to be re, Oarded as 

an approximation of the operator related to G. 
+ 

The first idea is the following. Take G = {z..] such that ‘I 

n. (3.1) z i i  = .5 

n. 
= .5 ‘ii+l 

‘c 

Z” = 1. 

+ cv 

Then ZND, is a tridiagonal matrix so tha I + At G D N  is also a tridiagonal matrix. It 

can be shown that the eigenvalues of M, = (%DN)-’SN take the following form. 
cu 

k-1 
X k  = k 1 xj k = 1, ..., N 

j =O 

Thus, the eigenvalues of the preconditioned matrix are real and positive. Hence we 

have a(MN) = N. as in (3.1) corresponds to shifting the values from 

the staggered mesh to the initial mesh by avera,oing the two neighbour values. Instead of 

this we can choose ZN = {ZY) corresponding to interpolation by first order polynomials. 

Tlus leads to the following definition of the matrix ZN = {Z4} 

.w 

The choice of 

* + 

- + 

We found emperically, that the eigenvalues of the preconditioned matrix are still real and 

positive, but the quantity NMN) is now worse than that of the previous case. 

Another simple preconditioner which this time is not of the form ZNDN is defined 
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by R, = (rr} where 

rii = 0 

J 

i = 1, ..., N-1 

In this case we still get real and positive preconditioned eigenvalues. Namely, they take 

the form: 

k sin TIIN 
k = 1, ..., N-1 

v'1 - x; 

where X N  is approximately equal to 2.46. We have a(MN) = N-1. This is the best we 

tested using tridiagonal preconditioners. Up to now the improvements are poor so we 

have to consider better approximations of the matrix Zw 

We consider an approximation of the operator related to by interpolation with a 
.c. 

polynomial of degree 2. One possible choice is the following: Z = {zij} where 

(3-4) 

.% h 

Now Z is a three-diagonal matrix, hence ZD is a four-diagonal matrix. The numerical 

experiments performed up to N = 32 give the following results. The eigenvalues X of 
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a 

M N  = (ZNDN)"SN are in general complex. The have positive rcal part greater than .99. 

Most of them are concentrated at 1. Figure 3.1 shows the behavior of the X's for N = 

12 and N = 20. 

N=12 
0 

0 

0 

0 
w - 

re X 
0 

0 

0 

N=20 
0 

0 

0 
0 

-3 - - 
0 
0 

0 

0 

0 

r e %  

Figure 3.1 - Location of the preconditioned eigenvalues in the complex plane. 

The corresponding u(MN) is represented in Table 3.1 for various N. This time 

c(MN) is bounded with respect to N. 

, 

Table 3.1 - Case of Four-diagonal preconditioner 



. 
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,. 

Other possibilities for the tridiagonal matrix Z were tested. For example one 

possible choice, analogous to that of the matrix in (3.1), is to take Z, = (2,) such that 
,. 

A 

,. 
z~,~-, = -1/8 
h 

(3.5) zii = 3/4 
h 

zi,i+l = 318 

Among all the experiments, the matrix proposed in (3.4) gives the best results. 

Five-diagonal preconditioners were tested, through interpolation by third degree polynonials. 

The results do not impowe those corresponding to Table 3.1. 

Now, if the system of linear equations (1.5) is solved, for example, by the implicit 

Richardson method, we are concerned with a(MN), where M, = (I + At ZNDN)-'(1 + At S x )  

and Z, is the matrix in (3.4). The graph of a(MN) versus At is reported in Figure 2.2 

for some values of N. So, in addition to the fast convergence of the iterative scheme, 

,. 
h 

t k  preconditioning matrix can be inverted efficiently. 

Figure 3.2 

8 
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N 

8 

16 

24 

32 

Now, if the steady state solution of problem (2.5) has to be found (which 

Maximum At for Stability At* p Corresponding to At* 

-05461 .02724 -9817 

-01836 .009120 .9919 

.009232 .005244 .9939 

.005138 -002521 -9966 

corresponds to the solution of problem (2.4), the explicit Richardson method can be used. 

This leads to the iterative scheme 

(3-6) 

If X denotes the general eigenvalue of S,, the scheme is stable provided we choose At 

un+* = (I + AtSN)Un , ncN 

such that 

-2Re X 
(3.7) 0 < At < inf[ ___ 1. 

X i l l 2  

Within the stability region we have p(1 + AtSN) < 1 where p denotes the spectral radius. 

In order to speed up the convergence we experimentally find At* such that 

p(1 + At*S,) attains its minimum inside the interval of stability. In general At* is not 

available. We use it here only to compare preconditioners. The same experiments are 

made for the preconditioned schemes, i.e.: 

A 

where ZN and Z, are respectively, the full matrix proposed in {DF] and the tridiagonal 

matrix given by (3.4). 

Both the schemes (3.8) and (3.9) converge to the same solution of (3.6). The 

results of these experiments are reported in Tables 3-2, 3-3, and 3-4 



N 

8 

16 

24 

32 

N 

8 

16 

24 

32 

I Maximum At for Stability 

Maximum At for Stability At* p Corresponding to At* 

.7685 55.52 -4448 

.6381 -3 190 .7112 

.4258 -2129 -8465 

.3210 .1605 .9043 
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At* 

1.281 

1.275 

1.274 

1.274 

1.281 

1.275 

1.274 

1.274 

-78 10 

.7787 

-7783 

-7782 

p Corresponding to At* 

-2190 

-2213 

.2217 

-2218 

Table 3-3 Minimum spectral radius of the preconditioned matrix: case of Z,. 

scheme 

(3.10) 
At2 
2 (I + AS, + - S;)U" , ncN un+l = 

In this case the stability restriction on A t  is given by 

(3.11) At? I X l 4  + 4 At2(ReX) I X I + 8At(ReX)2 + 8ReX c 0. 

for all eigenvalues, X, of S,. 

that of Tables 3-2, 3-3, and 3-4. 

We obtained results that were qualitatively analogous to 

, 
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4. ANALYSIS IN TWO DIMENSIONS 

In two dimensions we will consider the following steady state problem on the square 

A = {(x,y): -1 Q x < 1, -1 Q y Q 1) with homogeneous boundary conditions at I = 1, 

and y = 1. 

(4- 1) u x + y = f  

U(X,Y,O) = uo (X,Y)EA 

u(l,y,t) = u(x,l,t) = 0. t a o  

The essential idea in obtaining a pseudo-spectral approximation to (4.1) is the same as it 

was in 1-dimension. That is, to approximate spacial derivatives by constructing a global 

interpolant through discrete points. To obtain the Chebyshev pseudo-spectral approxjmation 

we take as these points 5 = yj = cos nj/N for j = l,Z, ..., N. This means that we must 

interpolate at the N2 points (%,y.) for i j  = 1,2, ..., N. Consequently, the Chebyshev 

derivative operator for this problem can be represented by the N2 x N2 matrix Sk2) + 

PtSN(2)P, where Sk2) is a block diagonal matrix whose blocks are each equal to S,, and P 

is a permutation matrix If one orders the N2 points (xpyj) by rows then S(N2) 

corresponds to the derivative in the x-direction and P is constructed so that PfS(,2)P 

corresponds to the derivative in the y-direction. Without preconditioning S(,2, + Pt Sk2)P 

is ill-conditioned. 

J 

As we saw in section 3 ZD is a good preconditioner for S,. Thus, a natural 

approach to finding a preconditioner for Sk2) + Pf Sk2)P is to try Z(2)D(2) + P‘Z(’)D(*)P, 

where Z(2) and D(2) are N2 x N2 block diagonal matrices whose blocks are the N x N 

matrices Z and D, respectively. 

To analyze the behavior of the eigenvalues of the preconditioning matrix, we define X 

as the generic eigenvalue of the preconditioned matrix, pN = max I Xi  I /min I X i  I (i =1,2, ... N2), 

aN is the maximum u such that ReX)a, and rN is the minimum r such that I X- 11 dr. 

In particular, rN and uN give us an idea of the location of the eigenvalues. (See figure 

4-1 below.) 

i 1 
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N 
4 

6 

8 

Re. x 

% rN *N 

1.530 .530 1.000 

1.552 -589 1.000 

1.560 .622 1.000 

I Figure 4-1 

Numerical experiments performed for N = 4,6,8 are summarized in Table 4-1 

Table 4-1 

Although the eigenvalues of this preconditioned matrix, (Z(2)D(2) + PfZ(2)D(2)P)-'(S(k) + 

Pt Sh2)P), are well behaved the matrix is full and thus difficult to invert. Another 

approach to constructing a preconditioner is to substitute in Z(2)D(2) + Pt Z(2)D(2)P the 

tridiagonal matrix Z defined by (2.4) in place of Z. We will denote this new N2 x N(2) 

matrix by Z(2)D(2) + Pt Z(2)D(2)P. This matrix represents a finite difference scheme 

A 

A A 

depending on seven points as illustrated by the stencil in Figure 4-2. 

(i + l j )  

(i-1,j) 

(i-2j) 

Figure 4-2 
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N 

4 

6 

8 

Results similar to those presented in Table 4-1 are prsented in Table 4-2 for 

Z(2)D(2) + pt Z(2)D(2)p. 

PN " uN 

2.206 .980 -897 

5.026 1.453 -488 

8.494 1.602 -306 

N 

4 

6 

8 

10 

Table 4-2 

Maximum At for Stability At* p Corresponding to At* 

SS09563 .07547812 .9248009 

.OS228855 -02614427 -9715761 

.0273053 -01365251 -9817108 

-01944351 .009721750 -98 105 11 

A ,. 
Although pN corresponding to Z(2)D(2) + Pt Z(2)D(2)P increases more quickly than ps 

corresponding to Z(2)D(2) + PtZ(2)D(2)P, the matrix can be inverted more efficiently. This 

is because Z(2)D(2) + Pt Z(')D(*)P is a banded matrix (with N lower codiagonals and 2N 
A A 

upper codiagonals). 

Another preconditioner that we considered was of the form 

Z{2pzc2>p@@) + PfD(3P). 

As in the l-dimensional case, if the steady-state solution is to be found, the explicit 

Richardson method can be used. 

attains its minimum inside the region of stability. 

We experimentally find At* such that p(1 + At*W,) 

The same experiments are made €or the 

preconditioned matrices. The results of the experiments are reported in Tables 3-3, 3-4, 

and 3-5. 

Table 4-3 Minimum spectral radius of the unpreconditioned amplification matrix 



N 

4 

6 

8 

10 

Maximum At for Stability 

-9879928 

.9094622 

.7200746 

.6038381 
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At* 

-7172827 

.6584506 

.4954 113 

-3623029 

p Corresponding to At* 

-6693591 

3027519 

A715243 

-8995660 

Table 4-4 Minimum spectral radius of the preconditioned matrix: 
Ca~e of Z$'ZNP(DN + Pf DNP) 

N 

4 

6 

8 

Maxiumum At for Stability 

1.009613 

-815170 

.7685055 

At* 

.6946138 

-6798409 

.6870439 

p Corresponding to At* 

-3763489 

.6681257 

37895085 

Table 4-5 Minimum spectral radius of the preconditioned matrix: 

Case of %DN + Pt Z,D,P 
A A 

We also considered the second order Runge-Kutta scheme, and we obtained results 

that were qualitatively analogous to those of Tables 4-3, 4-4, and 4-5. 

We applied the Richardson schemes in the unpreconditioned version and in the 
A A A  

preconditioned versions using the preconditioners ZNDN + Pf ZNDNP and 

ZNPt%P(DN + PtDNP), to find the solution of the model problem 

ut = y + uy - asin(a(x+l)) + asin(a(y+l) 

u(x,y,O) = sin(y-l)sin(x-1) 

u(-l,y,t) = u(x,-1,t) = 0 

of the type in (4.1). 

the L, norm we considered the scheme to converge when the exact error stabilized. 

also calculated global CPU times. 

the results are reported in Tables 4-6,4-7, and 4-8. 

We used the optimal At* listed in t a k s  4--, 4-4, and 4-5. Using 

We 

The experiments were performed on the IBM 3081 and 
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for Convergence 

4 122 

6 

8 

(in seconds) 

.12405 x lo-* .2 1 

Convergence 

400 I .lo4182 x I 

.1246626 x lo-' 

.io400 x 1 0 - ~  

.4709596 x 10- 

.47112 x lo6 I I 900 

Table 4-6 Unpreconditional Euler 

-03 

-26 

1.17 

No. of hiration 
for Convergence 

11 

34 

69 

CPI Time €or Construction 
of Preconditioner and 
Finding LU Decomposition 
of Preconditioner 

.oo 
-04 

.ll 

A A 

Table 4-7 Preconditioned Richardson Case of G D  + P' ZNDP 

Table 4-8 Precondition Richardson Case of Z,Pt ZNP(D 

CPU Time €or 
Construction of 
Precondtioner and 
Finding LU 
Decomposition of 
Preconditioner 

.oo 
-00 

.oo 

+ Pt DP). 
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